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Outline

• Radio Interferometry Basics

• Measurements of Spacecraft Angular Position

• Reducing Calibration Errors

• DSN Observations & Data Analysis

• Calibrator Density Determines Robustness

• Conclusions
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Radio Interferometry Basics

• Geometric delay given by

• Angular measurement error improves with
smaller delay error and longer baseline

• Interferometer measures

• Use of phase delay solution improves
thermal noise error

– Phase versus group delay

– Phase delay provides far better
precision (x50 @X-band), however cycle
ambiguity to be resolved
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Active Galactic Nuclei

Redshift  z~ 0.1 to 5

Distance: billions light years

Parallax = 0

Proper motion < 0.1 nrad/yr

Very weak sources

1 Jy = 10-26 W m-2 Hz-1

�S =
Tsys

G np �� �

need large antennae

34 - 70m

lots of Hz bandwidth

100 Mbps – 1Gbps

low system temp

Tsys = 20-40 Kelvin(Credit: C.M. Urry and P. Padovani )
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International Celestial Reference Frame (ICRF)

• S/X data and analysis through
1995

• ICRF-Ext.1, ICRF-Ext.2

• 212 defining sources

• Position uncertainty � 250 �as

• Accuracy of axes ~30 �as

• Orientation independent of
equator, ecliptic and equinox

• Fey et al. 2004
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Steady Improvement of Accuracy in Angular
Position Measurement

1959-2015

Dawn, Kepler,
Mars Smart Lander,

Mars Netlander,
Mars Scout I

Mars Sample Return,
Mars Scout II

MER

Mariner 2 - Venus

Mariner 4 - Mars

Mariner 6, 7 - Mars

Mariner 9 - MarsViking - Mars
Voyager - Saturn

Voyager - Uranus

Mars Observer - Mars

Galileo - 
Jupiter

Mars Polar Lander

Mars '01 Odyssey
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Spacecraft Angular Position

�

Correlator

Baseline B

�

�= B�cos(�) /c
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delay �

• Measurements made using reference
calibrator

• Using spacecraft tone signal

• Intercontinental baselines ~8000 km

• Group delay measurement - VLBI

• Calibrator few hundred mJy with 5-10
degrees angular separation

– 10-15 minute integration time

• Bandwidth few hundred MHz at X-band
(8.4 GHz)

• Measurement accuracy 2-5 nanoradian
(< 1 mas)
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Improved Differential VLBI Techniques

• Improve accuracy by minimizing
calibration errors

• Reduce BOTH temporal and angular
separation between calibrator and
target by fast switching between nearby
(small angular separation) calibrator
and target

– Angular dependent model errors
(e.g. due to media) are decreased
~ linearly by angular separation,
e.g., 1o separation ==> 5X
decrease in error

– Temporal model delay errors are
removed to first order

– Unmodeled delay scatter due to
media between sources ~ few psec
for source separation of 1o and
cycle time of 1 minute
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Improved Techniques (cont.)
Error budget estimate @ X-band

• Smaller switching angle
decreases errors due to

–  Media, Geometry

• Faster switching time
decreases errors due to

– Media, Bandpass errors

• Use of phase delay
decreases thermal errors

• Bandpass calibration
reduces dispersive phase
errors

• For absolute measurement
Quasar catalog error
dominates
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DSN Observation of Quasar Pairs
• Five pairs of quasars ~1-2o angular separation.

• Cycle time 1 minute; Two epochs.

• Pair of 34m antennas on Goldstone-Madrid
baseline

• Obtain ~5 psec relative rms error,
corresponding to ~<0.2 nrad (Majid & Bagri
JPL IPN report, Feb 2008)

One cycle at X-band is 120 psec

Table 3: R esults of difference observables after least 

square analysis described in text. 

Target 

Name 

Calibrator 

Name 

Angular 

Distance 

(degrees) 

Phase 

Resid 

(psec) 

Angular 

precision 

(nrad) 

0153+744 0159+723 2.2 6 0.25 

0814+425 0805+410 2.3 3 0.14 

1020+400 1030+415 2.4 6 0.25 

1053+704 10444+719 1.7 3 0.14 

1842+681 1849+670 1.2 4 0.17 
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Relative Astrometry (cont)
• Expect delay errors to decrease by reducing switching time and angle

between observations of calibrator and target; use of phase delay
improves thermal noise error; calibrate bandpass to improve dispersive
phase errors

• Initial set of observations  at DSN show promise

• Further observations with faint pairs of quasars will be carried out

• Demonstrate capability with observations of spacecraft with faint
nearby calibrator

• May be able to use 50 mJy calibrators ==> 1o mean distance

• Our ability to take advantage of such techniques at the DSN depends
on: How often can we find a calibrator with flux density > 50 mJy within
1o of spacecraft?

• Source structure causes problems at ~< 0.5 nrad level accuracy

– Recent observation of calibrator is required prior to spacecraft angular position
measurement

– However, weak sources tend to be more compact (less structure)
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What Fraction of Radio Sources are Compact?

• Radio source count density
exhibit pronounced deviation
from flat Euclidean space with
uniform source distribution

• Radio source count measured at
various frequency bands

– down to micro-Jansky level
@ X-band

• Using spectral index distribution
estimate density @ Ka-band
(Majid & Bagri 2006)

• Not all radio sources useful as
VLBI calibrator

• Determine fraction of sources
that are compact

• Improve radio source count
estimates in 1-50 mJy region

Fomalont et al. 2002

1-100 mJy

region of interest
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Compactness Fraction (cont.)

Mauna Kea OVRO Brewster N. Liberty Hancock

Kitt Peak Pie Town Ft. Davis Los Alamos St. Croix

• Nature of high frequency samples
not well known

• Estimates of compactness fraction
of faint sources at high frequency
10%-80%

• Have started a program at the VLBA
to determine what fraction of radio
sources are compact at the mas
level

• VLBA observation of sample > 10
mJy carried out  (Majid, Fomalont, &
Bagri in preparation)

• Preliminary results ==> 30% of
sources have compact cores

• Sample of 1-10 mJy to be observed
at VLA+VLBA -  proposal successful

• For sample < 1 mJy also need GBT
+ DSN 70m antennas
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Summary: What may be Achievable at the DSN
• We are developing new techniques to improve astrometric accuracy

– Reducing switching time (~60s) and angular separation (~1o) between quasars

– Use of phase delay & bandpass calibration

– Techniques also applicable with future DSN Array

• Initial set of observations carried out at the DSN show great promise

• Continue DSN observations using fainter calibrators to study robustness and to verify
and validate error estimates

– Eventually demo technique with spacecraft measurements

• Viability of technique depends on existence of sufficient number of calibrators

– Determining what fraction of radio sources are compact at the VLBA

• May be able to use calibrators with flux density ~ 50 mJy with calibrator <distance> 1o

• Relative precision of ~0.5 nrad may be achievable

• Absolute measurement always depends on knowledge of calibrator position

– Catalog maintained and improved
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FINITO
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DSN Observations (cont.)


